
Parallel-in-time Simulation of Eddy Current Problems using Parareal

Sebastian Schöps1,2, Innocent Niyonzima1,2, and Markus Clemens3

1Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder,
Schlossgartenstrasse 8, D-64289 Darmstadt, Germany

2Technische Universität Darmstadt, Graduate School of Computational Engineering,
Dolivostrasse 15, D-64293 Darmstadt, Germany

3Bergische Universität Wuppertal, Chair of Electromagnetic Theory,
Rainer-Grünter-Strasse 21, D-42119 Wuppertal, Germany

In this contribution the usage of the Parareal method is proposed for the time-parallel solution of the eddy current problem.
The method is adapted to the particular challenges of the problem that are related to the differential algebraic character due to
non-conducting regions. It is shown how the necessary modification can be automatically incorporated. The paper closes with a first
demonstration of a simulation of a realistic four-pole induction machine model using Parareal.

Index Terms—Parallel-in-time, eddy current, time stepping, finite elements

I. INTRODUCTION

THE numerical simulation of the eddy current problem in
time domain is computationally expensive due to implicit

time stepping. This is particularly challenging if long time
periods have to be considered as for example when the start-
up of an electrical machine is simulated. In this contribution
the usage of the Parareal method [1] is proposed and its
application to a real world electrical engineering problem is
shown. Furthermore, the method is adapted to the particular
challenges of space discretized eddy currents problems related
to the differential algebraic character of the equation.

When disregarding displacement currents, and introducing
the magnetic vector potential ~A as unknown, one obtains the
eddy current problem in A?-formulation

σ
∂ ~A

∂t
+∇× (ν∇× ~A) = ~χsi (1)

on the domain Ω × I and I := (t0, tend]. The problem
is well posed when supplying a gauge condition, suitable
boundary conditions and an initial value ~A(~r, t0) = ~A0(~r).
The material is described by conductivity σ and nonlinear
reluctivity ν; ~χs is the stranded-conductor winding function,
which homogeneously distributes the current in the domain,
i.e., ~Js = ~χsi where i is the vector of ns time-dependent
lumped currents.

Applying Finite Elements to the current-driven scenario (1)
yields the following semi-discrete system of differential alge-
braic equations (DAEs)

Mσa
′(t) + Kν

(
a(t)

)
a(t) = Xsi(t) (2)

where a(t) ∈ Rn is the vector of line-integrated magnetic
vector potentials, Mσ ∈ Rn×n denotes the (singular) mass
matrix representing the conductivities, Kν(a) ∈ Rn×n is
the flux-dependent curl-curl matrix and Xs ∈ Rn×ns the
discretized winding function. Movements in the computational
domain are considered by the moving band approach.

The solution of (2) is straight forward if the additional
equation for the voltages is not considered, i.e., it is an index-1

Figure 1. Mesh view of the four-pole induction machine model ”im 3kw”
from the GetDP library [2] as described in [3].

DAE [4]. This can be treated with standard techniques, while
higher index problems are increasingly more difficult to solve.

Let M+
σ be the Moore-Penrose pseudo inverse of Mσ such

that Pσ = M+
σMσ and Qσ = I − Pσ denote projectors de-

composing the vector potential ai = a(ti) at each time instance
into its differential and algebraic components, respectively

ai = Pσai,σ + Qσai,0.

When solving (2) for given currents ii = i(ti), only initial
conditions for the differential components a0,σ may be pre-
scribed. The algebraic components a0,0 must be consistently
determined by solving the constraint

Q>σKνQσa0,0 = Q>σXsi0 −Q>σKνPσa0,σ. (3)

However, when using the implicit Euler method to solve an
initial value problem with inconsistent data, i.e, a0,σ and a0,0
do not fulfill (3), a projection is automatically carried out: the
time stepping instruction for ti to ti+1 = ti + δt(1

δt
Mσ + Kν

(
ai+1

))
ai+1 = Xsii+1 +

1

δt
Mσai (4)

ignores inconsistent algebraic components after the first step
due to the term Mσai = MσPσai = Mσai,σ . This is
generally not the case for higher index DAEs and other time-
stepping schemes, see e.g. [4].

Algorithm 1: Parareal as proposed in [1].

1 initialize: a(k)0 ← a0 and ā
(0)
j , ã

(0)
j ← 0 (for all j, k);

2 set counter: k ← 1;
3 while maxj ‖a(k)j − a

(k−1)
j ‖ > tol do

4 for j ← 1 to ncpu do
5 solve coarse problem: ā(k)j ← G(Tj , Tj−1,a

(k)
j−1);

6 post process: a(k)j ← ā
(k)
j + ã

(k−1)
j − ā

(k−1)
j ;

7 end
8 parfor j ← 1 to ncpu do
9 solve fine problem: ã(k)j ← F(Tj , Tj−1,a

(k)
j−1);

10 end
11 increment counter: k ← k + 1;
12 end

II. THE PARAREAL METHOD

Parareal, as shown in Alg. 1, takes advantage of the parallel
architecture of modern computers to speed up the time in-
tegration similar to multiple shooting methods [1]. The time
interval is split into time intervals Ij := (Tj−1, Tj] with
t0 = T0 < T1 < . . . < Tncpu = tend according to the number
of CPUs ncpu available. Two types of problems are solved in a
nested loop until convergence is reached, e.g. by the implicit
Euler method (4): a cheap problem defined on a coarse time and
possibly spatial grid is solved sequentially (line 5, Alg. 1) to
propagate missing initial conditions and high-fidelity problems
are solved in parallel on the intervals Ij (line 9, Alg. 1).

In the algorithm, the solution operator of the cheap problem
is denoted by G : I × I × Rn −→ Rn such that

āj = G(Tj , Tj−1, āj−1) (5)

which computes āj+1 at Tj+1 by propagating the initial value
āj from Tj to Tj+1 by coarsely discretizing (2) in time, i.e.,
using large δt. Similarly the solution operator of the high-
fidelity problem is given by F : I × I × Rn −→ Rn

ãj = F(Tj , Tj−1, ãj−1) (6)

which computes ãj+1 by solving (2) with initial condition ãj
using fine discretizations, i.e., small δt, see Alg. 1.

For the eddy current problem line 6 of Alg. 1 must be
changed to reflect the differential algebraic character, i.e.

Pσa
(k)
j = Pσā

(k)
j + Pσã

(k−1)
j −Pσā

(k−1)
j

with a subsequent solve of (3) to obtain a consistent Qσa
(k)
j .

However, when using Implicit Euler as shown above, this step
is automatically taken care of. Similarly, the norm in line 3
should be adapted to only account for differential components,
e.g. by considering a projection or the eddy current losses.

III. DISCUSSION

The algorithms were implemented in Octave [5] while
GetDP is used for the simulation of the four-pole induction
machine model ”im 3kw” with 8308 degrees of freedom
[2], [3]. They are executed on an Intel Xeon cluster with
80×2.00GHz cores, i.e., 8×E7-8850 and 1TB DDR3 memory.
As sequential time stepper the implicit Euler scheme is applied

0 0.05 0.1 0.15 0.2
10−8

10−4

100

Simulation time t/s

R
el

at
iv

e
er

ro
r

Sequential Euler (δt = 10−3)

Sequential Euler (δt = 10−4)

Parareal (fine: δt = 10−5)

Figure 2. Relative l2 errors during time; dashed vertical lines show the 40
intervals of size h = 0.05 s on which the problem is solved in parallel

for 10 electrical periods (I = (0, 0.2] s). The time grid of
this simulation is refined from δt = 10−3 s and δt = 10−4 s
to δt = 10−5 s. The coarsest sequential simulation takes ca.
15min, while the ones with finer grids correspondingly more
time, i.e., 2h and 20h, respectively.

The Parareal implementation uses OpenMP parallelized calls
of GetDP. The implicit Euler method is used with time step
sizes δt = 10−5 s and δt = 10−3 s for the fine and coarse
problem, respectively. Fig. 2 shows the errors in comparison
with the sequential reference simulation at δt = 10−5 s.
Only ncpu = 40 of the 80 cores have been used. After
k = 4 Parareal iterations a relative l2 accuracy of 10−2 has
been obtained. This corresponds to a potential speed-up of
ncpu/k = 10 with respect to the reference simulation when
neglecting communication costs and the coarse grid solution.
The speed-up is obtained since the effective length of the time
interval was reduced by a factor of ncpu = 40 but iterated
k = 4 times. However, due to suboptimal implementation
the actual speed-up was only 2-3. The full paper will discuss
improvements by using more sophisticated solvers on the
coarse grid, implementations and advantages using OpenMPI.

ACKNOWLEDGEMENT

This work was supported by DFG grants SCHO 1562/1-1
and CL 143/11-1, the Excellence Initiative of German Federal
and State Governments and the Graduate School for Compu-
tational Engineering at Technische Universität Darmstadt.

REFERENCES

[1] J.-L. Lions, Y. Maday, and G. Turinici, “A parareal
in time discretization of PDEs”, Comptes Rendus de
l’Académie des Sciences – Series I – Mathematics, 332,
no., pp. 661–668, 2001.

[2] C. Geuzaine, “GetDP: A general finite-element solver for
the de Rham complex”, in PAMM, vol. 7, Wiley, Dec.
2007, pp. 1 010 603–1 010 604.

[3] J. Gyselinck, L. Vandevelde, and J. Melkebeek, “Multi-
slice FE modeling of electrical machines with skewed
slots-the skew discretization error”, IEEE Trans. Magn.,
37, no., pp. 3233–3237, Sep. 2001.

[4] A. Bartel, S. Baumanns, and S. Schöps, “Structural anal-
ysis of electrical circuits including magnetoquasistatic
devices”, APNUM, 61, no., pp. 1257–1270, Sep. 2011.

[5] J. W. Eaton, D. Bateman, S. Hauberg, et al., The GNU
Octave 4.0 Reference Manual 1/2: Free Your Numbers.
Samurai Media Limited, Oct. 2015.

	Introduction
	The Parareal Method
	Discussion

